MACHINES AVAILABLE IN THE LABORATORIES OF DEPARTMENT OF MECHANICAL ENGINEERING

1st Semester

1. Engineering Graphics and Design (ESC102)

2nd Semester

1. Workshop / Manufacturing Practices (ESC104)

A. Lathe machine

- Following jobs are being done:
 - (i) Turning: Reduction of outer diameter of mild steel pin over a specified length
 - (ii) Step turning: Further reduction of diameter to make the step of specified length
 - (iii) Taper turning: Machining to different size of diameter over a specified length to get the desired taper angle

(iv) Knurling: To make roughness on the upper surface of pin by Knurling tool

B. Shaping machine

• Reduction of dimension on length , breadth, height of a 15mm cast iron cube

C. Drilling machine

• Making of four numbers hole of 6-10 mm dia on a rectangular piece of mild steel job, spaced at equal distance

D. Bench Grinding machine

- Making V-groove on two numbers MS plate
- Shaping of tool profile

E. Welding machine

• Join two numbers of MS piece on which V-groove has been made

F. Mould(cop and drag) preparation and Casting

• Casting of aluminum/zinc for a specified wooden pattern

3rd Semester

1. STRENGTH OF MATERIALS (ME1308-P)

- A. Tensile test
 - Tensile test of mild steel, aluminum, brass, copper, brass made test piece has been done using the apparatus

B. Compression test

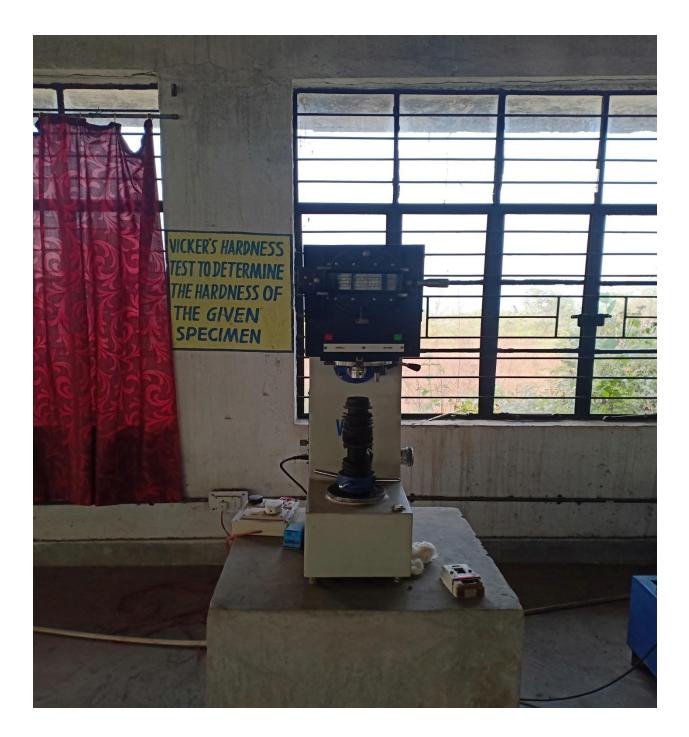
• Compression test of concrete blocks has been done by the apparatus

C. Torsion test

• Torsion test of mild steel rods has been done by the apparatus

D. Impact test

• Impact test of mild steel


E. Brinell Hardness Test

• Hardness test of steel, copper and aluminum

F. Vicker's Hardness test

• Hardness test of steel, copper and aluminum

G. Rockwell Hardness Test

• Hardness test of steel, copper and aluminum

- 2. Applied Thermodynamics Lab (ME1310-P)
 - A. Cochran Boiler
 - Different components of Cochran Boiler are being compared with the text book and understood
 - Vertical boiler that's why occupies less space and portable

A. Babcock Boiler

- Water tube boiler components are being illustrated to the students also by comparing from text book.
- The specifications are being explained to the students

B. Lancashire Boiler

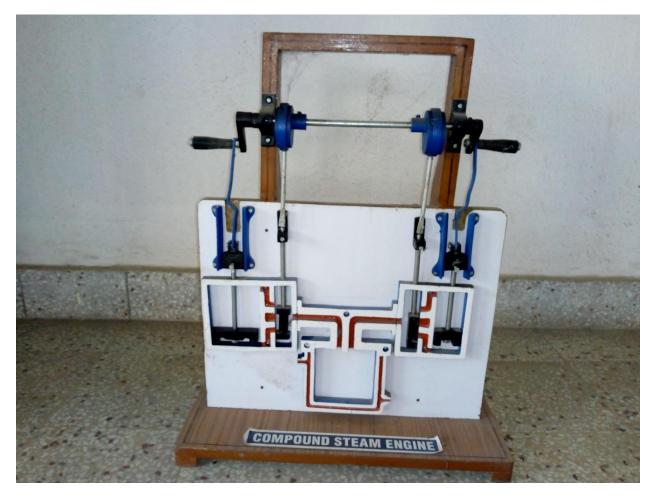
- The components of the fire tube boiler are being explained to the students along with the constructional details and also the differences with water tube boiler.
- Specifications are being explained.

C. 2 Stroke and 4 Stroke Petrol Engine

• Working principle of both the types of engine and nomenclature of the components are being explained with help of manually operated models

D. C.I. Engine

• Study the compression ignition engine


E. Simple Steam engine

• Study of simple steam engine

F. Compound Steam Engine

• Study of compound steam engine

3. FLUID MECHANICS LAB

A. Bernoulli's Theorem Apparatus

- Based on energy conservation between two sections
- Verification of Bernoulli's equation

B. Venturimeter Apparatus

- Measures co-efficient of discharge of flowing fluid in the pipe
- Based on conservation of energy and mass

C. Pipe Friction Apparatus

- Measures friction factor in different material's pipe with different diameters in turbulent flow
- Used different materials are Grey Cast Iron and Mild steel

D. Pipe Bend Apparatus

• Measures minor losses like due to sudden enlargement, sudden contraction, pipe fittings, bend etc of flowing fluid in pipe

E. Orificemeter Apparatus

- Measures co-efficient of discharge of flowing fluid in the pipe
- Based on conservation of energy and mass

F. Metacentric Height of a Boat Model

- Measures metacentric height of boat model
- Works on Archimedes's principle

G. Reynold's Law Apparatus

• Shows the difference between Laminar flow , Transition flow and Turbulent flow based on Reynold's number

H. Capillary Tube Apparatus

• Finds the surface tension of given fluid using capillary tubes and travelling microscope

4. Material Science Lab (ME1307-P)

A. Optical Microscope

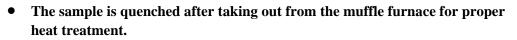
- To study the microstructure of polished material
- Used for viewing the grain structure of any metal at high magnificence and watch if any defects occur.

B. Double Disc Polishing Machine

• The Material sample is made smooth by means of rotating polishing agent and it is free from any type of scratch.

C. Belt Grinder

• The sample is polished on dry and wet belt grinder which gives polished surface but a lot of scratch is present in it which will be further removed by rotating polishing machine.



D. Muffle Furnace

• Heat treatment is done by keeping the sample inside the furnace

E. Jominy Quench Machine

4th Semester

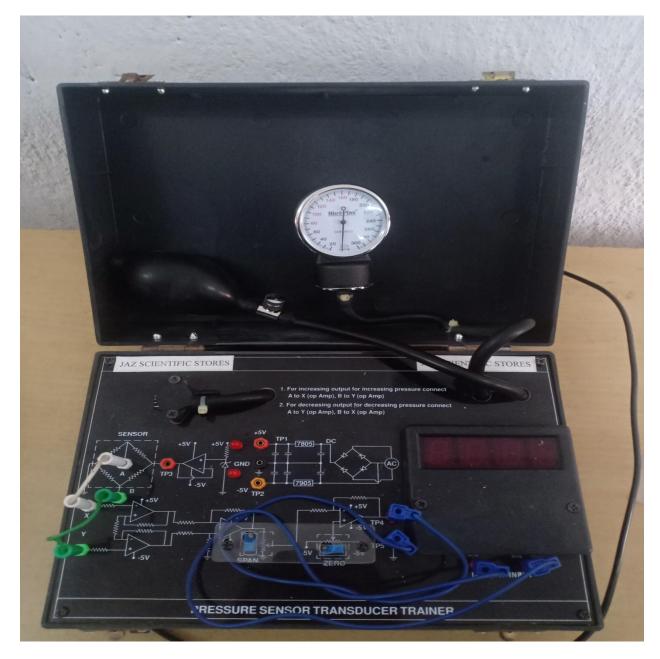
1. Mechanical measurements and metrology lab (ME1406-P)

A. Measuring instrument gauges

- Measurement of angle using Sine bar
- Measurement of precise length using Slip Gauge

B. Strain Gauge trainer

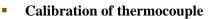
Measurement of strain

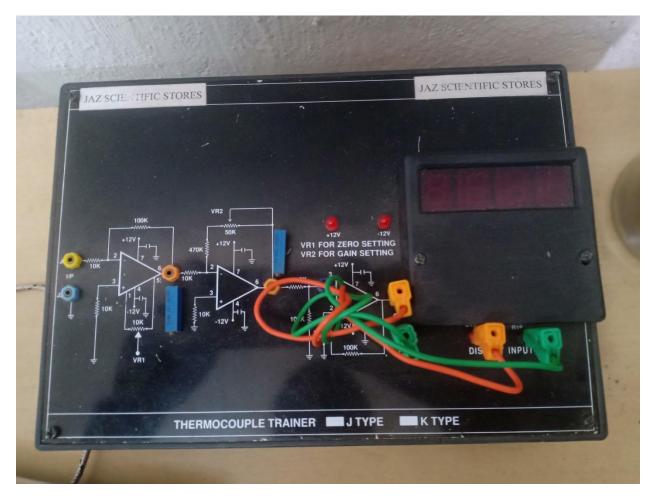

C. Surface roughness tester

Measurement of surface roughness of given work piece

D. Pressure gauge trainer

•


Caliberate the given pressure guage


E. Temperature transducer trainer

Study this temperature measuring device

F. Thermocouple trainer

2. Manufacturing science 1 lab (ME 1408-P)

A. 5KVA aluminum melting furnace

- To make a solid pattern casting of aluminium
- To make a hollow pattern casting of alloy

B. Lathe machine and Shaper machine

• To make Hexagonal nut with threading

5th Semester

1. Dynamics Of Machine Lab ME 1508-p

A. Vibration measuring instrument

Study and use of vibration measuring instrument

B. Whirling of shaft

•

Determination of critical speed of given shaft

C. Fatigue testing machine

- Study fatigue testing machine
- Determination of number of cycles at which a material fails

2. Heat and mass transfer lab (ME 1511-P)

A. Thermal conductivity apparatus

• Measures the thermal conductivity of given metal bar

B. Stefan Boltzman apparatus

• Measures the Stefan Boltzman constant

C. Natural convection apparatus

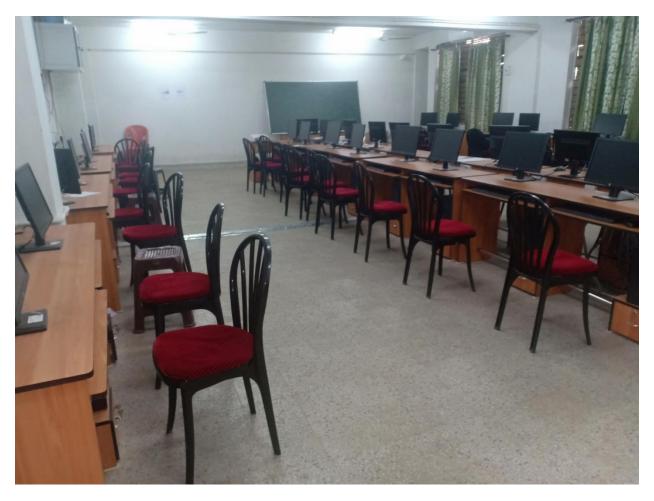
• Measures the heat transfer co-efficient in natural convection

D. Parallel and counter flow apparatus

• Measures the log mean temperature difference of parallel and counter flow of flowing fluid

E. Emissivity apparatus

• Measures the emissivity of given grey body with respect to black body



F. Composite wall apparatus

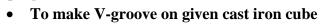
• Measures the thermal conductivity and thermal resistivity of composite wall

3. Computer Aided Drafting (ME1510-P)

4. Manufacturing Science-II Lab (ME1509-P)

A. Lathe Machine

• Boring and Thread cutting



B. Milling machine

• To make T-slot

C. Shaping machine

D. Surface grinder machine

• Polishing of mild steel and aluminum work piece

E. Grinding machine

• Tool grinding

6th SEM

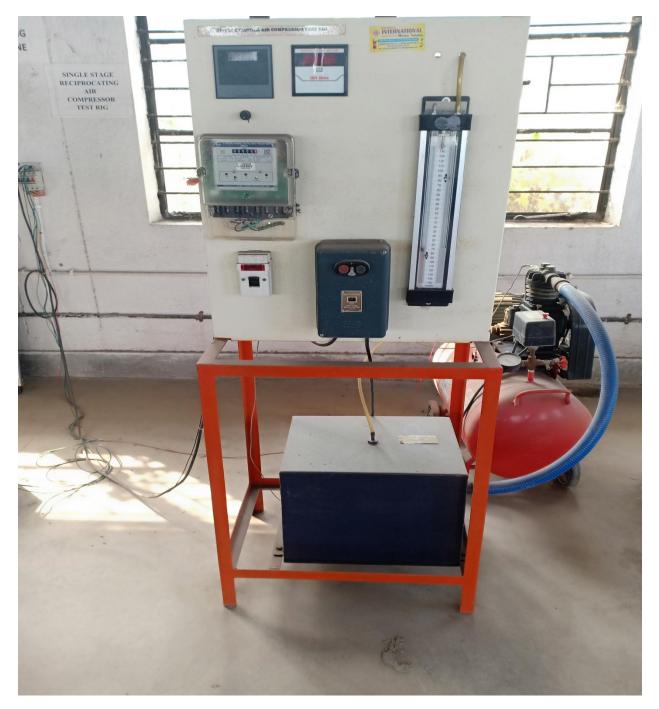
1. IC Engine Lab (ME1607-P)

A. Two stroke petrol engine

• Determination of BHP, Fuel consumption, efficiency, air consumption

B. Four stroke petrol engine

• Determination of BHP, Fuel consumption, efficiency, air consumption


C. Four stroke diesel engine

• Determination of BHP, Fuel consumption, efficiency, air consumption

D. Reciprocating air compressor

• Determination of various types of efficiencies like volumetric efficiency, mechanical efficiency etc.

E. Two stroke S.I. engine

• Determination of thermal efficiency and heat balance

F. Four stroke S.I. engine

• Determination of thermal efficiency and heat balance

2. Fluid Machinery Lab

A. Impact of Jet Apparatus

• Verification of momentum theory

B. Impulse turbine

C. Reaction turbine

D. Reciprocating pump

E. Air blower

F. Air compressor

• Determination of various types of efficiencies

3. Refrigeration & Air Conditioning Lab

- A. Vapor compression refrigeration system -01
 - Measurement of COP and efficiency

B. Vapour compression refrigeration system -02

• Measurement of COP and efficiency

C. Vapor compression refrigeration system -03

• Measurement of COP and efficiency

D. Air conditioning system

• Measurement of COP and air flow rate

7th Semester

1. Numeric Control of Machine Tools and robotics

A. Robotic Arm

• Measurement of joint velocities of robotic arm

B. CNC milling centre and CNC turning centre

• Development and machining of irregular shapes

2. Automobile Engineering Lab (ME1706-P)

A. Steering system

• Study the steering system

B. Ignition system

• Study of ignition system

C. Transmission system

• Study of transmission system

D. Suspension system

• Study of suspension system

E. Braking system

• Study of hydraulic braking system

F. Lubrication system

• Study of lubrication system

G. Cooling system

• Study of cooling system

H. Chassis

•

Study and analysis of Chassis system